Tags


Click a tag to remove it from package

Edit Species Groups of Package

Edit Parameter of Package

Edit DOI Package

Choose a project for this package

FRED
  • Contact
  • GDPR policy
  • Imprint
  • About
  • Sign Up
  • Login
  • SEARCH
  • Search and find
  • Packages
  • Map
  • By Category ...
    • Study sites
    • Sampling locations
    • Parameters
    • Sampling types
    • Species groups
    • Current DOIs

173 Peetzsee insitu

Title
Peetzsee insitu
Period
1993-03-24 till 1993-12-15
Period length
8 months 22 days
Sampling interval
28 days
Species Groups
Study site
Peetzsee
Sampling locations
Peetzsee
location
52.42520, 13.83500
location
code
234
description
Parameters

physics:

secchi depth
name
secchi depth
description

synonyms
Sichttiefe, Transparancy
water temperature
name
water temperature
description

Wassertemperatur

synonyms
water temp, Wassertemperatur

chemistry:

electrical conductivity
name
electrical conductivity
synonyms
elektrische Leitfähigkeit, Salinität, Salzgehalt, Konduktivität, cond
oxygen concentration
name
oxygen concentration
synonyms
Sauerstoffkonzentration
oxygen saturation
name
oxygen saturation
synonyms
Sauerstoffsättigung
pH
name
pH
Contact
Thomas Hintze
Licence for data
All rights reserved. Please send a request to Thomas Hintze if you like to use this data. Mind our data policy: IGB Data Policy

Data files (e.g. excel)

TitlecreatedFiletypeActions
234-Peetzsee.csv 12. Jun. 2018 13:01 datatable: .csv Download

Machine Readable Metadata Files

FRED provides all metadata of this package in a maschine readable format. There is a pure XML file and one EML file in Ecological Metadata Language. Both files are published under the free CC BY 4.0 Licence.

  • Peetzsee_insitu.xml
  • Peetzsee_insitu.eml

You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

To remain on our site, click Cancel.

Parsing data File

Estimated Time:

Why does it take so much time?

While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

  • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
  • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
  • analyzing: check out for different data types (can be time, numeric or text)